
www.edn.com October 3, 2002 | edn 61

designfeature By Brian Dipert, Technical Editor

At a glance............................62

Consult with an expert ......64

For more information ........68

FPGAs “DiSP”lay
THEIR PROCESSING PROWESS

Mention “DSP”in conversation around the water cooler, and

what vision will pop into other folks’ heads? Probably a pic-

ture of a piece of silicon from a company such as Analog Devices,

Motorola, or Texas Instruments. This image isn’t necessarily wrong,

mind you, but it’s a bit like (as the old saying goes) “putting the cart

before the horse.” First and foremost, DSP stands for digital-signal

processing; that is, converting analog sig-
nals to the digital domain, arithmetically
transforming them in some way and then
translating them back to the analog do-
main for human sensory consumption.

Digital-signal processors from the
aforementioned companies and many
others are only one vehicle for imple-
menting digital-signal-processing func-
tions. The earliest DSP chips, after all,
were little more than otherwise general-
purpose CPUs with Harvard architec-
tures (separate instruction and data bus-
es and separate caches), befitting their
algorithms’ data-centric nature. As gen-
eral-purpose CPUs have grown speedier
and particularly as they’ve added on-

board arithmetic coprocessors and sig-
nal-processing-optimized instruction-
set extensions, they’re increasingly taking
over the calculation burden that might
have formerly required a separate com-
pute engine. (This article uses “digital-
signal processing”to refer to the function
and “DSP” to refer to the processor.) 

On the other end of the hardware-ver-
sus-software-implementation spectrum
are ASICs, housing hard-wired arith-
metic logic blocks and state machines.
Inflexible? Yes. Do you need to design the
hardware yourself? Yes, unless you license
predesigned IP (intellectual property),
which you must still stitch together with
the remainder of your chips’ circuits. But

DOES THE PERFORMANCE-POWER-PRICE

PRODUCT OF YOUR SOFTWARE-CENTRIC

APPROACH NO LONGER COMPUTE? DO YOU

NEED A NIMBLER PLATFORM THAN A HARD-

WIRED ASIC CAN PROVIDE? PROGRAMMABLE

LOGIC MAY BE YOUR ANSWER, BUT CAREFUL-

LY CALCULATE THE TRADE-OFFS TO CORRECT-

LY SOLVE YOUR PROBLEM.

Ill
us

tra
tio

n 
by

 D
an

ie
l G

ui
de

ra



designfeature Digital-signal processing in FPGAs

62 edn | October 3, 2002 www.edn.com

fast, low-power, and inexpensive (the
cost based on the amount of silicon con-
sumed to construct the function)? Yes.
The ASIC-based approach (note, again,
we’re talking about hardwired functions,
not a processor core you’ve integrated
into your ASIC) is particularly attractive
when your end system will sell in high
enough volumes to justify the NRE
(nonrecurring-engineering) costs, when
time-to-market isn’t critical, and when
standardization and design experience
maximize your first-silicon-functional
confidence and preclude the need for
post-sale upgrades.

In attempting to simultaneously stay
ahead of general-purpose CPUs and pre-
vent you from jumping ship to hard-
wired ASICs, the DSP vendors have
evolved their high-end architectures into
multicore VLIW (very-long-instruction-

word) “engines” and have incorporated
their own hardware-acceleration capa-
bilities in the form of dedicated Viterbi
decoders, matrix multipliers, and the like.

Although signal-processing functions
contain a great deal of parallelism, the
incremental performance gain with
each added engine is less than 100%,
and multiprocessors are challenging
to program. Hardware acceleration
also tends to make the resultant DSP
more application-specific and, there-
fore, more expensive than a general-
purpose alternative.

SILICON FOUNDATIONS

Digital-signal processing, thanks to
explosive growth in wired and wireless
networks and in multimedia, repre-
sents one of the hottest areas in elec-
tronics. So it’s no surprise that dozens
if not hundreds of stand-alone-chip
and embedded-core vendors are chas-
ing after the business, representing
both the software- and the hardware-
centric implementation extremes. But
at least one in-between option bears
your consideration (see sidebar
“Theme and variation” on the Web

version of this article at www.ednmag.
com). Like software, a programmable-
logic device is almost infinitely customiz-
able, and, as with a processor, the silicon
physical-design work is already done for
you. FPGAs aren’t quite as low-power,
fast, or dense as ASICs, but they’re supe-
rior to processors in those regards (see
sidebar“Evaluating performance: FPGAs
versus DSPs” on the Web version of this
article at www.ednmag.com). You can
buy FPGAs, unlike ASICs, in small quan-
tities with no upfront NRE charges, and
you need not wait for months’ worth of
fab, packaging, and test delays after your
design’s done to obtain a working chip.

FPGA manufacturers have for years
now been trumpeting their chips’ ability
to implement digital-signal processing,
even before the emergence of low-laten-
cy carry-chain-routing lines that sped ad-
dition and subtraction operations span-
ning multiple logic blocks. The next
significant improvement in FPGA arith-
metic capability appeared with Atmel’s
AT40K architecture. An embedded AND
gate within each logic block, working in
concert with block-to-block diagonal
routing lines, boosted performance when
the chips were crunching array-multipli-
cation calculations (Figure 1). Ironically,
however,AT40K provides no carry chains.

Atmel’s FPGAs are partially repro-
grammable. (Lattice’s ORCA line and Xil-
inx’s Virtex devices are also reprogram-
mable, but their development tools do
not neatly expose the silicon potential.)
Theoretically, this capability means that
you could dynamically time-swap various
logic engines into a common silicon fab-
ric. Pragmatically, the more likely sce-
nario involves your ability to, for exam-
ple, optimize an imaging filter’s co-
efficients in a digital-still-camera or
videocamera application as ambient-light
conditions change or tweak processing

AT A GLANCE

�� FPGAs’ sweet spot straddles software’s
flexibility and hardware’s thriftiness, low
power, and performance.

�� Latest generation programmable-logic
architectures embed arithmetic blocks for
increased acceleration.

�� Silicon strengths strapped by software
shortcomings will leave you unsatisfied.

�� Custom processors ease the software-to-
hardware transition.

CELL CELL CELL

CELL CELL CELL

CELL CELL CELL

LUT

LUT

A

B

C

D

D Q PRODUCT
(REGISTERED)
OR
PRODUCT

CARRY

(a)

(b)

DIAGONAL
DIRECT
CONNECT

ORTHOGONAL
DIRECT
CONNECT

Diagonal routing (a) combines with an AND-
enhanced logic block (b) to accelerate array multi-
plication operations (courtesy Atmel).

F igure  1

(continued on pg 66)

TABLE 1—VENDORS, PRODUCTS, AND ARITHMETIC-STRUCTURE SPECIFICATIONS
Products and structure-

Company Structure count ranges Features
Altera DSP block Stratix EP1S (six to 28) Dedicated 18��18-bit multiplier, pipeline, and accumulation circuitry; predictable 250-MHz 

performance, which provides maximum data-throughput performance of 2 GMACS 
(giga multiply-accumulate operations per second) per DSP block.

QuickLogic ECU (embedded Eclipse Plus (10 to 18) Integrated multiply, add, and accumulate functions; 8-bit multiplier, 16-bit accumulator 2.6
computational unit) billion MACs/sec operations using the ECU, and you can implement additional multiply-

accumulate functions in the programmable logic for 2 billion MACs/sec more, when 
clocked at 100 MHz.

Xilinx Multiplier Virtex-II (four to 168) 18��18 bit multipliers support as many as 18-bit signed or 17-bit unsigned representations,
Virtex-II Pro (12 to 566) with cascading to support bigger numbers; the multipliers can be fully combinatorial or 

pipelined, running at more than 300 MHz.



64 edn | October 3, 2002 www.edn.com

designfeature Digital-signal processing in FPGAs

CONSULT WITH AN EXPERT

Designing digital-signal-process-
ing hardware is quite different
from designing for software-
based systems. In addition to
the obvious considerations for
hardware, such as clocking, tim-
ing and so on, a hardware digi-
tal-signal-processing designer
also has to consider how an
algorithm will map to hardware,
as well as the availability of
design resources.

Before beginning the digital-
signal-processing design, a
designer should determine the
appropriateness of the
approach. Generally, if a single
DSP or microprocessor provides
enough horsepower to accom-
plish the task at hand, the
designer should use it instead of
an FPGA-based option. The
tools are more mature, talent is
cheaper and easier to find, and
most of the algorithms currently
in use were developed for soft-
ware platforms.

If, however, the required per-
formance is greater than a single
DSP or a microprocessor can
achieve, the performance gains
that an FPGA presents outweigh
the costs. Typical FPGA perform-
ance gains over a single DSP are
around 100 times, and gains of
more than 1000 times are possi-
ble under some circumstances.
Other considerations can also tip
the balance in favor of an FPGA.
Power dissipation of a well-exe-
cuted FPGA design, for example,
is typically about 20% of the
power consumption of a soft-
ware-based system operating at
the same sample rate.

Programmatic issues, such as
the cost of software validation in
certain systems, can also tip the
scale toward FPGAs. Most sys-
tems include both an FPGA and
a DSP. In these cases, it is usual-
ly best to delegate the “inner
loop” to the FPGA and leave the
housekeeping and other odds
and ends to the microprocessor.

Not all devices are equal for

digital-signal processing. The
FPGA needs to have robust
arithmetic capabilities, which,
until the introduction of Altera’s
Stratix, heavily favored the Xilinx
architectures. Newer devices
have fast multipliers that ease
the transition to hardware for
those of you unfamiliar with
hardware digital-signal. A multi-
plier may not be a panacea,
though, because, in most cases,
a design lacks sufficient multipli-
ers for you to use them indis-
criminately.

The key to designing digital-
signal processing in FPGAs is
thinking in terms of what the
hardware that performs the
function must look like. Al-
gorithms for software imple-
mentations tend to be heavy on
multiplication as well as floating-
point operations. Often, small
changes in the algorithm or use
of alternative approaches can
lead to greatly simplified hard-
ware. You can significantly
reduce area just by switching
from floating-point to fixed-point
arithmetic or to a modified float-
ing-point format that uses only
minimal bits to represent the
signal at given points in the
algorithm.

Vendors are offering high-
level digital-signal-processing-
design tools that make the entry
into FPGA-based digital-signal
processing easier for newcom-
ers. These tools include plug-ins
for scientific packages, such as
Matlab. These plug-ins include
the Xilinx System Generator, as
well as high-level-synthesis tools,
such as those from Celoxica.
Although these tools sufficiently
lower the bar for putting algo-
rithms into hardware for systems
designers who are not hard-
ware-savvy, the occupied-area
and performance results are
bound to be disappointing. A
seasoned hardware designer is
likely to find the tools frustrating
because it is difficult to use

them with intellectual property
in the tool’s rather limited
library.

A designer should simulate
the algorithm at the system level
before executing the detailed
hardware design to verify the
selected precision at each point
in the design and to iron out
any bugs in the algorithm. It is
far easier and faster to sort out
these issues in a high-level
model than at a gate-level simu-
lation. Doing a bit-true system-
level simulation in C or The
MathWorks’ Matlab also has the
advantage of providing high-
fidelity test vectors that you can
later use to verify the proper
operation of the digital design,
once you complete the detailed
design. System-level simulations
also allow you to explore alter-
native algorithms in search 
of one that better maps into 
hardware.

Digital-signal processing in
hardware was around long
before the advent of the micro-
processor. It dates to the late
1950s, and, for nearly 30 years,
you could do digital-signal pro-
cessing only with custom hard-
ware. Because of the high cost
of digital logic in those days,
developers created algorithms
and techniques to handle the
processing with a minimum of
hardware. These algorithms are
just as good today as when they
were developed, and they’re
appropriate for a hardware-digi-
tal-signal-processing design
because they can offer signifi-
cant system savings and power-
dissipation advantages over
designs that you base on an
algorithm developed for soft-
ware. Technical libraries are
loaded with these hardware
gems, which are buried deep in
20 years’ worth of dust, waiting
for an astute hardware engineer
to resurrect them. Even if you
can’t find a suitable algorithm,
the knowledge that early work

embodies can serve as a useful
guide for making your algorithm
more hardware-friendly.

After selecting the algorithm
and data precisions, the design-
er should look at the clock
cycles available per sample to
determine the architecture of
the hardware. To get the most
bang for the buck, strive for as
many clock cycles per sample as
possible. Current FPGAs can run
at clock rates well beyond 150
MHz, yet most digital-signal-pro-
cessing applications are still run-
ning at sample rates of less than
20 MHz. In these cases, running
a faster master clock provides
the capability for bit- or digit-ser-
ial processing at a considerable
savings in logic area and, subse-
quently, in device cost.

Faster clocks also open the
door for implementing certain
algorithms with repetitive opera-
tions in iterative hardware. A
good example of this technique
is using a scaling accumulator
over several clock cycles in place
of a full parallel multiplier. The
block diagram that falls out of
this step is the blueprint for the
rest of the design effort, which is
essentially the same as any
other digital-hardware-design
effort.

Author’s biography
FPGA guru Ray Andraka,
founder of Andraka Consulting
(North Kingstown, RI) has been
designing digital-signal-process-
ing functions into programmable
logic since 1988, even before the
days when carry chains were
considered a state-of-the-art
arithmetic innovation. He’s an
enthusiastic participant on
comp.arch.fpga, comp.dsp, and
other relevant Internet news-
groups, as well as at industry
events such as the ACM (Adap-
tive Computing Machine) FPGA
conference, and his Web site of-
fers lots of free and useful 
information.

By Ray Andraka, Andraka Consulting Group



TABLE 2—ALTERA DSP-BLOCK-CONFIGURATION OPTIONS AND FEATURES
Operation modes of the DSP block
DSP-block mode 9��9 bits 18��18 bits 36��36 bits
Simple multiplier Eight multipliers with eight product outputs Four multipliers with four product outputs One Multiplier with one 

product output
Multiply-accumulator Two multiply and accumulates (34 bit) Two 52-bit multiply and accumulates NA
Two-multipliers adder Four sums of two multiplier products each Two sums of two multiplier products each NA
Four-multipliers adder Two sums of four multiplier products each One sums of four multiplier products each NA

DSP-block features
Feature Benefit
Multiplier ●● 9��9-, 18��18-, and 36��36-bit multiplication

●● Floating-point arithmetic
●● Signed and unsigned operation
●● Full precision in all modes
●● Optional shift-register chain on inputs

Adder/subtracter/accumulator ●● Dynamic switching between adder and subtracter
●● 9-, 18-, or 36-bit operation for adder and subtracter
●● 52-bit accumulator
●● Signed and unsigned operation

Summation unit ●● Summation of as many as four products in one clock cycle
Complex shift function ●● Barrel shifter, crossbar switch, and FIR filter

parameters in response to vary-
ing communication-channel
SNRs.

The now-dominant LUT
(look-up-table)-plus-register-
logic-block combination, in
combination with
fast carry chains, is
relatively efficient when imple-
menting addition and subtrac-
tion operations. It’s not, howev-
er, optimal in cost, performance,
and power for multiplication
and division functions. As a re-
sult, Altera (with Stratix),
QuickLogic (with QuickDSP,
now renamed Eclipse Plus) and
Xilinx (with Virtex-II and Vir-
tex-II Pro) have all taken a page
from the ASIC book of tricks
and embedded dedicated multi-
plier-function blocks on-chip
(Figure 2). Altera and Quick-
Logic move even further along
the integration path, providing
full-blown MACs (multiply-ac-
cumulators, see Table 1 for spec-
ifications and Reference 1 for
prices). Altera calls its version
the DSP block (Table 2); Quick-
Logic—the first of the three to
take the dedicated-arithmetic-unit-inte-
gration plunge—refers to its configurable
variant as an embedded computational
unit (Table 3).

In examining Altera’s and Xilinx’s
arithmetic structures, you might ques-
tion why the companies chose nonstan-

dard 18-bit data inputs versus the more
common 16-, 24-, and 32-bit lengths. One
answer is that they wanted to match the
bus widths of the FPGA’s parity-inclusive
embedded-RAM blocks. But a more gen-
eral answer also exists, and it leads to a
subtle but powerful FPGA strength.A sig-

nal-processing function rarely
demands exactly 16-, 24-, or 32-
bit precision. It requires less if
your CPU or DSP is wasting
pins, external memory, and bus
bandwidth. If more, you have to
implement performance-sap-
ping multiple-pass algorithms.

With an FPGA, particularly if
you use general-purpose LUT
and register structures, you can
implement exactly the data pre-
cision you need to do the job—
at least from a logic standpoint.
Memory is the only remaining
wrinkle; both the large embed-
ded-memory blocks and the ex-
ternal memories come in prede-
fined bus widths. FPGAs that
can alternatively employ LUTs
not only for logic functions, but
also as small RAM arrays, such
as Xilinx’s various product fam-
ilies and Lattice’s ORCA chips,
are helpful here, because they
give you density and bus-width
flexibility to supplement or re-
place dedicated RAM arrays.
LUTs have another valuable
function in calculation-intensive
signal processing: They are a

more efficient alternative to registers for
storing intermediary values.

DESIGN CONTORTIONS

Alas, the semiconductor graveyard is
littered with the bones of great FPGA
hardware ideas that went that by the way-

designfeature Digital-signal processing in FPGAs

66 edn | October 3, 2002 www.edn.com

16 16

(a)

COEFFICIENT 1
BUFFER

DATA 1
BUFFER

COEFFICIENT 2
BUFFER

DATA 2
BUFFER

COEFFICIENT 3
BUFFER

DATA 3
BUFFER

ABUS

REGISTER MULTIPLY

INSTRUCTION FIFOs RAM

COEFFICIENT 4
BUFFER

DATA 4
BUFFER

18�18-BIT
MULTIPLIER

18

18

36

36

37

36

36

18

18

18

18

18

18

16

8 8

16

18

ADDER

ADDER

SUMMATION
UNIT

ADD-
ACCUMULATE

CIRCUIT

18

(b)

(c)

A 36
P

B

BBUS

CBUS
173

RBUS

ADD

Dedicated arithmetic structures from Altera (a), QuickLogic (b) and
Xilinx (c) focus on DSP functions.

F igure  2

(continued from pg 62)



designfeature Digital-signal processing in FPGAs

68 edn | October 3, 2002 www.edn.com

side because of inadequate design-soft-
ware support. How can you ensure that
your signal-processing algorithms take
full advantage of the power, perfor-
mance, and efficiency of the embedded
circuitry within these advanced chips?
The answer depends at least to some ex-
tent on your design background.

If you’re used to creating hard-wired
circuits in ASICs, you’ll be treading the
easier of the two paths to FPGA nirvana.
In a perfect world, the combination of a
third-party synthesis compiler and the
FPGA-vendor-provided place-and-route
software should be able to automatically
infer from your HDL code where to use
specialized multipliers and MACs, much
as they should do with embedded mem-
ory arrays and other on-chip function
blocks (references 2 and 3). The vendors’
documentation often makes recommen-
dations on coding styles, which help
guide the design software to the ideal end
result (Reference 4).

In the real world, you still sometimes
need to explicitly instantiate references to
these and other device primitives in your
HDL, a task that leaves your code less ar-
chitecture- and device-generic, thereby
contradicting a key motivation for using
an HDL in the first place. The vendors
have all developed pushbutton utilities
that greatly simplify your creation of
higher level functions, such as filters and
transforms. Enter a few parameters, click
“OK,” and out comes a netlist “black
box,” which your HDL code references.
At minimum, you have the option of cre-
ating a fully serial (to minimize pin count
and logic usage) or fully parallel (to max-
imize performance) circuit. Depending
on the size of your design and device and
on your performance and power bud-

gets, you might want to choose an in-
between approach; in this case, make
sure that the vendor’s core generator
tools support such flexibility.

Most of you, though, will probably
be coming to FPGAs from a software
background, and, ideally, you’d like to
port  your legacy code to hardware as
straightforwardly as possible. In this
case, the news is less optimistic. In
fact, at least one in-the-know FPGA
power user suggests that, unless a DSP
has become a completely unpalatable
option from a power, performance, or
cost standpoint, you shouldn’t both-
er taking even one step down the
FPGA path (see sidebar “Consult
with an expert”). Ironically, in devel-
oping your software in the first place,
you’ve taken what was in all likeli-

FOR MORE INFORMATION...
For more information on products such as those discussed in this article, go to www.edn.com/info and enter the reader service number. When you contact any of the fol-
lowing manufacturers directly, please let them know you read about their products in EDN.

Altera
1-408-544-7000
www.altera.com
Enter No. 301

Atmel
1-408-441-0311
www.atmel.com
Enter No. 302

QuickLogic
1-408-990-4000
www.quicklogic.com
Enter No. 303

Triscend
1-650-968-8668
www.triscend.com
Enter No. 304

Xilinx
1-408-559-7778
www.xilinx.com
Enter No. 305

OTHER COMPANIES MENTIONED

IN THIS ARTICLE

3DSP
www.3dsp.com

Actel
www.actel.com

Adelante Technologies
www.adelantetechnologies.com

Analog Devices
www.analog.com

Andraka Consulting Group
www.andraka.com

Berkeley Design 
Technology Inc
www.bdti.com

Cadence
www.cadence.com

Celoxica
www.celoxica.com

Improv Systems
www.improvsys.com

Leopard Logic
www.leopardlogic.com

The MathWorks
www.mathworks.com

Motorola
www.motorola.com

QuickSilver Technology
www.qstech.com

Synopsys
www.synopsys.com

Tensilica
www.tensilica.com

Texas Instruments
www.ti.com

SUPER INFO NUMBER
For more information on the
products available from all of the
vendors listed in this box, enter
no. 306 at www.edn.com/info.

FPGA-vendor tool sets (a) interact
with The MathWorks (b) and Cadence (c) algo-
rithm-development environments to create
hardware-housed bit streams (courtesy Xilinx).

FLOATING-P0INT ALGORITHM

FIXED-P0INT ALGORITHM

HARDWARE-ARCHITECTURE
CREATION RTL/HDS

FLOAT TO FIXED

LOGIC SYNTHESIS

GATE-LEVEL NETLIST

RTL/HARDWARE-DESIGN 
SYSTEM

ISE

RTL IP/CORE
GENERATOR

IMPORT

F igure  3

(a) (c)

(b)



designfeature Digital-signal processing in FPGAs

70 edn | October 3, 2002 www.edn.com

hood a highly parallelizable function and
gone through a lot of work to convert it
to a time-sequential serial algorithm in C
or assembly code. Now, to port the algo-
rithm to an FPGA, you need to reparal-
lelize it and, sometimes, convert it from
floating-point back to sufficiently-pre-
cise fixed-point arithmetic.

Companies such as Adelante
Technologies (formerly, Frontier Design,
with A|RT), Celoxica (with Handel-C),
and Synopsys (the original developer of
SystemC) all claim the ability to generate
hardware designs from C code. And, to a
degree, they all deliver on their claims.
None of them, though, fully supports
generic ANSI C code. (Pointers are par-
ticularly problematic.) Their languages
are tailored to the task of hardware cre-
ation. So, although they might be ac-
ceptable for brand-new designs, they will
be less help with your years’ worth of ex-
isting software.

The designs created by C-to-hardware
tools are less efficient than those you de-
velop from the beginning in an HDL (an
analogy to programming in C versus as-
sembly language), but, thanks to the
near-guaranteed performance boost in
software-to-hardware conversion, lost ef-
ficiency may be a small concern. If you’ve
developed your software algorithms in
The MathWorks’ Matlab, you might be in
better luck. Both Altera and Xilinx offer
tool sets that interface to Matlab and
Simulink and output vendor-optimized
hardware code and IP blocks. Xilinx also
supports Cadence’s SPW (Signal Pro-
cessing Worksystem, Figure 3).

INTERMEDIATE APPROACHES

Although we’re talking about digital-
signal processing, you shouldn’t assume
that you’ve got at your disposal a “bina-
ry” set of implementation options—ei-
ther fully software or fully hardware. The
spectrum of choices is, in reality, far more
“analog,” reflecting a possible partition-
ing of tasks among both hardware for op-
timum speed, power consumption, or
per-unit cost and software for ease of de-
velopment and legacy compatibility (Fig-
ure 4). Both Atmel and Xilinx, for exam-
ple, have, with their respective FPSLIC
and Virtex-II Pro product lines, com-
bined arithmetic-tuned programmable
logic and “hard” CPU cores on a single
device. If you develop your signal-pro-
cessing algorithm in Matlab and Simu-
link, you can iteratively direct portions of

it to C code and the remainder to FPGA
hardware. Otherwise, don’t waste too
much time on tedious hardware-versus-
software partitioning and repartitioning;
focus your efforts on obvious software
bottlenecks that benefit from FPGA ac-
celeration.

Altera’s ARM-based Excalibur chips
and QuickLogic’s QuickMIPS line do not
include the hardware MACs in the ven-
dors’ respective Stratix and Eclipse Plus
products. However, years’ worth of suc-
cessful design examples suggest that, al-
though MACs might speed signal pro-
cessing, they aren’t an absolute require-
ment. Embedded memory blocks, for ex-
ample, can also find use as multipliers.
For the same reason, don’t forget about
Triscend’s A7 and E5 chips. If you do
need dedicated arithmetic circuits to hit
your hardware-design targets, a “soft”
CPU core might conversely provide you
with sufficient software capabilities. Al-
tera’s Nios fits inside Stratix, and Xilinx’s
MicroBlaze works with Virtex-II and Vir-
tex-II Pro. Supplementing Virtex-II’s
“hard” PowerPC cores with one or mul-
tiple “soft” MicroBlaze cores results in
some interesting single-chip, multi-
processor-architecture possibilities.

Look, for example, at Altera’s recently
announced DSP-development kit, an ex-
panded version of last year’s DSP Builder
tool. Working hand in hand with Matlab
and Simulink, it enables you to develop
custom instruction-set and hardware-ac-
celerated variants of the Nios processor
that tap into the MACs and other re-
sources in the programmable-logic fab-
ric. Altera claims to have more than 60

DSP cores in its IP library, spanning spe-
cific functions, such as encryption, error
correction, image processing, and mod-
ulation, as well as general-purpose func-
tions, such as filters and transforms.�

References
1. Dipert, Brian, “EDN’s third annual

programmable-logic directory,” EDN,
Sept 5, 2002, pg 44.

2. Dipert, Brian, “Lies, damn lies, and
benchmarks: The race for the truth is
on,” EDN, May 27, 1999, pg 54.

3. Dipert, Brian, “Synthesis shoot-out
at the EDN corral,” EDN, Sept 11, 1998,
pg 95.

4. Dipert, Brian, “Getting a handle on
HDLs,” EDN, May 7, 1998, pg 71.

Acknowledgments
Kudos to Jeff Bier from Berkeley Design
Technology and to Ray Andraka from the
Andraka Consulting Group for their edi-
torial contributions.

Author’s biography
Technical Editor Brian Dipert wonders
how long it will be before it’s possible to
squeeze all of the electronics in a personal
video recorder or a digital-cell-phone base

station into a single
hybrid FPGA—in-
cluding the mixed-
signal front- and
back-end stuff. Seri-
ously. You can reach
Brian the fantasist at
1-916-454-5242, fax

1-916-454-5101, bdipert@edn.com, and
www.bdipert.com.

EMBEDDED
PROCESSOR

MEMORY

EMBEDDED
PROCESSOR

MEMORY

FIR

FIR

FIR

IN-PHASE-
QUADRATURE

MAP
IN-PHASE-

QUADRATURE
MAP

NUMERICALLY
CONTROLLED 
OSCILLATOR

NUMERICALLY
CONTROLLED 
OSCILLATOR

EMBEDDED
PROCESSORS

EMBEDDED PROCESSORS
WITH HARDWARE
ACCELERATION

COMPLETE HARDWARE
IMPLEMENTATION

100

600
PERFORMANCE
(MMACs/SEC)

Soft CPU customization enables partitioning between hardware and software (courtesy Altera).

F igure  4



EVALUATING PERFORMANCE: FPGAS VERSUS DSPS

The latest digital-signal-process-
ing-enhanced FPGAs boast huge
gate counts, ample amounts of
hard-wired SRAM, and an abun-
dance of hard-wired multipliers.
These attributes hint at the
potential for phenomenal perfor-
mance in digital-signal-process-
ing applications. But experienced
engineers know that the differ-
ence between potential perfor-
mance and actual performance
can be huge.

SIMPLE METRICS DON’T CUT IT

Experienced engineers also
know to view the performance
claims of chip vendors with
skepticism. This cynicism defi-
nitely holds true when evaluat-
ing the digital-signal-processing
performance of FPGAs. For
example, FPGA vendors some-
times quote the digital-signal-
processing performance of their
chips in terms of MACs (multi-
ply-accumulates) per second. On
the surface, this approach seems
reasonable; after all, many digi-
tal-signal-processing algorithms

make heavy use of MACs, and
DSP vendors are also fond of
quoting processor performance
in terms of MACs per second.

But, like other oversimplified

performance metrics, such as
MIPS, the MACs-per-second
measurement suffers from sev-
eral serious flaws, not the least
of which is that no universal def-
inition exists for exactly what a
MAC operation comprises. When
FPGA vendors quote MACs-per-
second numbers for their
devices, they often base their fig-
ures on distributed-arithmetic
implementations of FIR (nonre-
cursive) filters. Distributed arith-
metic is a natural way to imple-
ment a FIR filter on an FPGA.
The problem is that in a distrib-
uted-arithmetic FIR, the MAC
operators rely on the fact that
the coefficients of the filter are
constants. If the MAC operations
in your algorithm don’t use con-
stant coefficients (for example, if
you’re building an adaptive filter
or a correlator), the FPGA will
deliver lower MACs-per-second
performance.

How, then, should you go
about determining the true digi-
tal-signal-processing application
performance of these new

FPGAs? This question is the one
that BDTI (Berkeley Design
Technology) recently began con-
sidering. For years, the company
has been benchmarking the sig-

nal-processing performance of
DSPs and general-purpose
processors using the BDTI
Benchmarks—a suite of digital-
signal-processing algorithm ker-
nels (for example, an FFT and a
Viterbi decoder)—coupled with a
methodology designed to
ensure fair comparisons. The
company has evaluated more
than 50 processors with the
BDTI Benchmarks, so using the
same benchmarks for FPGAs
seemed to be an attractive
approach that would allow the
company to quickly compare
FPGAs with those and other
processors. Unfortunately, BDTI
found that this approach was the
wrong way to go.

HOLISTIC OPTIMIZATION

Although a handful of algo-
rithms dominates the computa-
tion requirements of a digital-
signal-processing application,
individual algorithm kernels are
unsuitable as benchmarks for
high-capacity FPGAs, for several
reasons. With a processor, digi-

tal-signal-process-
ing-application
developers aggres-
sively optimize each
of the key perfor-
mance-hungry algo-
rithms for speed.
When an algorithm
is running, it has
exclusive use of all
of the processor’s
execution units. But
with an FPGA,
designers have the

flexibility to trade off parallelism
(and hence performance)
against resources used (logic
blocks and multipliers, for exam-
ple). Unlike with a processor,

with an FPGA, it makes no sense
to use all of the available
resources for a single algorithm,
because doing so would leave
no resources for the rest of the
application. Instead, a designer
must optimize the application as
a whole, allocating the available
hardware amid each of the con-
stituent algorithms (TTaabbllee  AA).

This observation led the com-
pany to the conclusion that, to
evaluate the digital-signal-pro-
cessing performance of FPGAs, 
it needed a benchmark that
looked more like a complete
application and less like a single-
algorithm kernel. The next ques-
tion facing BDTI was what kind
of application to use as the basis
of the benchmark. Informal mar-
ket research indicated that the
new digital-signal-processing-
enhanced FPGAs were of strong
interest to developers of com-
munications systems, leading us
to develop a benchmark based
on a communications receiver.

COST VERSUS/PERFORMANCE

Although they are powerful,
the latest digital-signal-process-
ing-enhanced FGPAs are also
expensive. The lowest priced
members of Xilinx’s Virtex-II and
Altera’s Stratix devices cost hun-
dreds of dollars, and the most
expensive family members cost
thousands of dollars per chip.
Such prices render these chips
unsuitable for highly cost-con-
strained products, such as cable-
TV set-top boxes or DSL
modems. But in communica-
tions-infrastructure equipment, a
several-hundred-dollar price tag
does not automatically disqualify
a chip—especially if that chip can
handle the processing for many

CHANNEL 0

EIGHT-
CHANNEL

FOUR-
CHANNEL

CHANNEL 1
CHANNEL 2
CHANNEL 3
CHANNEL 4
CHANNEL 5
CHANNEL 6
CHANNEL 7

FIR

FFT

FOUR-
CHANNEL

FFT

FOUR-
CHANNEL
SLICER

FOUR-
CHANNEL
SLICER

TWO-CHANNEL
VITERBI DECODER

TWO-CHANNEL
VITERBI DECODER

TWO-CHANNEL
VITERBI DECODER

TWO-CHANNEL
VITERBI DECODER

Altera implemented the BDTI Communications Benchmark
using this eight-channel cluster, replicated until the bench-

mark iterations exhausted the Stratix FPGA’s resources (courtesy BDTI).

By Jeff Bier, Berkeley Design Technology Inc

F igure  A



communications channels.
Therefore, for the initial bench-
marking of digital-signal-process-
ing-enhanced FPGAs, the com-
pany evaluated how many chan-
nels of a communications receiv-
er each of the benchmarked
chips could support.

The benchmark comprises a
simplified OFDM (orthogonal-
frequency-division-multiplexing)
receiver (FFiigguurree  AA). OFDM is a
complex technique that is find-
ing increasing use in a variety of
high-speed data-communica-
tions applications, such as fixed
wireless systems. A detailed
benchmark specification spells
out all of the key parameters of
the benchmark receiver, such as
sample rates, filter lengths, and
channel-code constraint lengths.
Benchmark coders implement as
many channels of the receiver as
they can cram into a single chip.

THE BENCHMARK

BDTI invited Altera and Xilinx
to implement the BDTI Com-
munications Benchmark on their
digital-signal-processing-en-
hanced FPGAs. Xilinx initially
agreed but later withdrew from
the project. If you’d like to see
Xilinx results for the benchmark,
e-mail BDTI at xilinx-bench
mark@BDTI.com; BDTI will send
Xilinx a summary of your
requests. BDTI also invited
Motorola and Texas Instruments
to implement the benchmarks
on their high-end DSPs, which
target communications-infra-
structure equipment. Altera and
Motorola took our challenge,
and each delivered a highly opti-
mized implementation of the
benchmark.

Because Altera was not yet

shipping its recently
announced Stratix family
of digital-signal-processing-
enhanced FPGAs at the
time of the benchmarking
effort, BDTI projected
Altera’s results based on
simulations. In contrast,
Motorola has been shipping its
MSC8101DSP, which it based on
the StarCore SC140 core, in vol-
ume for a while. BDTI scruti-
nized both Altera’s and
Motorola’s benchmark imple-
mentations for correct operation
and conformance to specifica-
tions.

SURPRISING RESULTS

It’s clear that the new digital-
signal-processing-enhanced
FPGAs, with dozens of hard-
wired multipliers and RAMs and
tens of thousands of config-
urable-logic blocks, are capable
of vast parallelism in applications
that are amenable to paralleliza-
tion. As with a processor,
though, an FPGA’s throughput in
an application depends not only
on how much work it can per-
form in one cycle but also on
the clock speed it can attain. For
processors, the maximum clock
speed is easy to ascertain. But
for a given FPGA, the clock
speed attainable depends in part
on what you’re doing with it.
Altera used simulations to pro-
ject the clock speed attainable
on its Stratix FPGAs with its
implementation of BDTI’s
Communications Benchmark.
BDTI will verify these projections
when silicon becomes available.

Although BDTI expected the
digital-signal-processing-
enhanced FPGAs to perform
well, the company was surprised

by just how well they did. For
example, the Altera Stratix 1S20-
6 chip (scheduled to begin to be
available for sampling this
month, according to Altera) is
projected to support more than
a dozen channels of BDTI’s
Communications Benchmark. In
contrast, the 300-MHz Motorola
MSC8101 can support only
about one-fifth of one channel.

The 1S20-6 has a projected
price of $325 (1000). The
MSC8101 current sells for $140
in similar quantities, which is
fairly typical of high-end DSPs.
As a result, on a cost/perform-
ance basis, the advantage of the
1S20-6 over the MSC8101 is
somewhat smaller when you
compare it with its throughput
advantage, but FPGAs retain a
significant lead.

Full details on the results of
the FPGA-versus-DSP-bench-
marking work appear in BDTI’s
just-published report, FPGAs for
DSP. 

OTHER FACTORS

BDTI’s initial benchmarking
work suggests that the new digi-
tal-signal-processing-enhanced
FPGAs can indeed achieve
impressive performance in cer-
tain types of DSP applications.
But experience with these new
devices and discussions with
users indicate that factors other
than performance often greatly
influence decisions regarding

FPGA use. For example,
one key challenge fac-
ing digital-signal-pro-
cessing developers
using FPGAs is the rela-
tive complexity of the
design process and the
lack of digital-signal-pro-

cessing-specific features in the
development tools, compared
with the tools available for the
best supported DSPs. 

Clearly, as with most technol-
ogy-selection choices, deciding
whether to use an FPGA for a
digital-signal-processing applica-
tion requires a sophisticated,
multidimensional evaluation—
one that depends on many
specifics of the target applica-
tion. In researching BDTI’s
recently completed report, the
company developed a frame-
work to guide developers in this
challenging process. BDTI plans
to continue its benchmarking
and analysis, tracking the new
generations of digital-signal-pro-
cessing-enhanced FPGAs,
processors, and other emerging
alternatives.

Author’s biography
Jeff Bier is general manager and
co-founder of BDTI (Berkeley,
CA), a well-known digital-signal-
processing technology-analysis
and software-development com-
pany. BDTI’s Web site contains a
wealth of free information of in-
terest to developers of digital-sig-
nal-processing systems. The
company recently expanded its
focus beyond traditional DSPs
and microprocessors to include
FPGAs.

TABLE A—ALLOCATION OF ALTERA
STRATIX FPGA-HARDWARE

RESOURCES
Logic elements (%) DSP units (%)

FIR 15 0
FFT 35 100
Viterbi 50 0



THEME AND VARIATION
General-purpose processors
and DSPs...ASICs...FPGAs...
hardware/software blends...
Enough options to make
your head spin? Well, hold
onto your hat, because a few
more alternatives are coming
your way.

One criticism of conven-
tional DSPs is their lack of
instruction-set flexibility.
Rarely do you find, with
apologies to Goldilocks, an
architecture that’s not “too
generic” or “too specific” but,
instead, “just right” for your
application. As a result, you
have to either buy a faster,
more expensive, and
more power-hungry
processor to compensate
for missing functions or
pay for functions you’ll
never use. User-customiz-
able DSPs from compa-
nies such as 3DSP and
Improv Systems and cus-
tom CPUs from folks such
as Tensilica, aim to
address your needs with
tailored chips. Be careful,
though; you’re taking a
long-term availability risk
by buying a sole-sourced
device from a small sup-
plier, and you won’t be
able to benefit from the
high-volume economies
of scale of generic DSPs.

Are you looking for hardware
that’s flexible like a FPGA but
doesn’t require you to tediously
stitch together fine-grained logic
primitives, such as LUTs (look-up
tables) and registers? Well,
instead consider QuickSilver
Technology’s ACM (Adaptive
Computing Machine), which
interconnects higher level mem-
ory and processing primitives in

a user-programmable fashion
tailored for high-speed dynamic
reconfiguration. QuickSilver has
a test chip in hand, and the
company plans both to develop
its own application-tailored ACM
variants through subsidiaries and
spin-offs and to license the tech-
nology to other companies as an
embedded core.

Finally, what if you’re con-

vinced that a hardware-centric
signal-processing approach is
the way to go, but a pure FPGA
won’t meet your performance,
power, or per-unit-price goals,
and a pure ASIC is too inflexible?
In such cases, embed one or
multiple FPGA cores within your
ASIC to provide the best of both
worlds. Today’s embedded FPGA
suppliers include Actel (Vari-

Core), Atmel (AT40K), and
Leopard Logic (HyperBlox),
and IBM and partner Xilinx
are scheduled to begin ship-
ping their first hybrid ASICs
by mid-decade. The follow-
ing design example from
Leopard Logic illustrates the
technique:

“The DCT (discrete-cosine-
transform) algorithm is a
common application kernel
used in the image-processing
graphics domain. This exam-
ple implements an 8�8
DCT, typically used in video
encoders with 8-bit data
inputs and 16-bit data out-

puts. FFiigguurree  AA defines the
8�8 DCT algorithm.

DSP MAPPING

“This algorithm can
run in software on a
processor, even on a
generic 16-bit DSP, but it
will incur a large latency
and require many DSP
clock cycles for execu-
tion. The relative ineffi-
ciency of logic activity per
clock cycle versus a
direct-parallel-hardware
implementation also
incurs a significant power
penalty. In general, it is
advisable in digital-signal-
processing computation
to calculate at the highest

possible throughput for the least
amount of time.

TRADITIONAL MAPPING TO 
DISCRETE FPGAS

“Another design alternative is
to map the 8�8 DCT into hard-
ware using a conventional FPGA
technology. The design chal-
lenge in this case is to maximally
use the preselected generic tiled

+

�

+

�

+

�

+

�

+

+

�

+

+ +

+

+�

+

�

+

�

+

�

+

�

+

�

+

�

PE0,0

PE0,1 PE1,1 PE2,1

d4

d6

d5

d7

d2

2d3

d2

2d3

d1

d1

X0

X1

X2

X3

X4

X5

X6

X7

x0

x1

x2

x3

x4

x5

x6

x7

2d1

2d1

2d1

PE1,0 PE2,0

INPUT
REORDERING

OUTPUT
REORDERING

PERFECT
SHUFFLE

PERFECT
SHUFFLE

� �

� �

�

�

�

�

�

�

�

�

�

The 8�8-bit DCT algorithm presents many opportu-
nities for parallelism (courtesy Leopard Logic).

+

+

�

� �

�

REGISTER

REGISTER

REGISTER

REGISTER

1

0

0

MODE[1]

MODE[1]

COEFO[15:0]
THROUGH
COEF4[15:0]

COEFSEL[2:0]

INO[23:0]

IN1[23:0]

OUT0[23:0]

OUT1[23:0]

OUT2[23:0]

OUT3[23:0]

IN2[23:0]

IN3[23:0]

MULTEN

MODE[0]

�

�

�

A single, flexible Radix-4 Butterfly design, driven by exter-
nal mode inputs, can comprehend all required operations

(courtesy Leopard Logic).

F igure  B

F igure  A



resources. This challenge
manifests itself as an issue
when tables need to match
available memory-segment
sizing, or when arithmetic
processing needs to match to
available multiplier units and
their associated bit widths.
Independent of the mapping
process, the final design real-
ization in a commercial FPGA
will likely consume a substan-
tial amount of power and
have a significant cost premi-
um compared with a full cus-
tom, standard-cell, or gate-
array ASIC version. 

“This example maps the
8�8 DCT into the Xilinx
Virtex-II XC2V250-5-FG456
FPGA. The design uses the
hardwired multipliers distrib-
uted through the FPGA logic
array. The resultant design runs
at a maximum operating fre-
quency of 103 MHz under worst-
case commercial conditions.

MAPPING TO HYPERBLOX FP

“To present the closest com-
parison of the HyperBlox FP to
the Virtex-II architecture, this
mapping uses hardwired multi-
pliers implemented in standard-
cell ASICs, and the remainder of
the logic maps to the Leopard
Logic HyperBlox FP embedded
FPGA. 

“The FPGA portion of the
design requires 975 HyperBlox
Core Cells, representing more
than 95% of the 1024 available
Core Cells. Whereas speed
degradation is common in high-
ly used discrete FPGAs, the
patented hierarchical intercon-
nect of the HyperBlox array
allows this design to operate at a
maximum operating frequency
of 288 MHz under worst-case

commercial conditions on a
0.13-micron CMOS process. 

“Although the traditional map-
ping shows impressive perfor-
mance gains and is useful for
comparison purposes, it is not
the best method to implement
designs with the HyperBlox FP.

“BEST-OF-BREED” MAPPING
TO THE HYPERBLOX FP

“The final implementation of
the 8�8 DCT illustrates the
Leopard Logic design approach
that encompasses the best tech-
nology from the ASIC and FPGA
worlds. ASIC designers are no
longer forced to accept a specific
configured platform option.

“You can decompose the DCT
algorithm into three columns,
each of which contains two
Radix-4 DCT Butterfly opera-
tions. The six Butterfly compo-
nents each take on a slightly dif-
ferent form, but you can design

a single Butterfly that encom-
passes all of the required modes
(FFiigguurree  BB).

“Note that FFiigguurree  BB shows
shifters added to the basic struc-
ture to control bit growth. Six of
the Butterfly nodes combine into
the structure required for the
8�8 DCT as shown in FFiigguurree  CC.
Place the Radix-4 Butterfly of
FFiigguurree  BB in low-power, area-effi-
cient standard-cell ASIC circuitry,
because the Butterfly contains
well-defined arithmetic blocks
that have fixed functions. 

“Note, too, the control lines in
FFiigguurree  BB. Although the ASIC
components are fixed in func-
tion, the control lines allow
external selection of the desired
mode of operation, in this case,
by the FPGA circuitry.

“The HyperBlox FP embedded
FPGA provides flexible, repro-
grammable control to the ASIC
datapath components. Two of

the Radix-4 Butterfly nodes
combine to form one of the
three columns of the 8�8
DCT. If you allow three cycles
for data processing, you can
use a single column and cir-
culate the data through the
pair of Radix-4 Butterfly
nodes three times. On each
pass, the controller imple-
mented in the HyperBlox FP
embedded FPGA selects the
proper mode of operation for
each of the Butterfly nodes. 

“The resultant architecture,
shown in FFiigguurree  DD, reveals
the partitioning between ASIC
and FPGA circuitry. The circuit
has a maximum operating
frequency of 900 MHz under
worst-case commercial condi-

tions on a 0.13-micron CMOS
process. Because this architec-
ture requires three passes
through the circuit, the net pro-
cessing rate of this circuit is 300
MHz. If the design requires the
full 900 MHz, you must instanti-
ate all three DCT columns.

“Note that this partitioning of
the 8�8 DCT, with a simple
reprogramming of the HyperBlox
FP embedded FPGA, can also
implement a 32-point DCT used
in audio compression.”

Clearly, Xilinx, not Leopard
Logic, is the expert at imple-
menting designs in Xilinx archi-
tectures. Leopard Logic might
also have, intentionally or not,
chosen a signal-processing func-
tion that is simultaneously opti-
mum for its HyperBlox technolo-
gy and not optimum for Xilinx
FPGAs. If Xilinx responds to
Leopard Logic’s claims, you’ll
find the company’s response
here.

INPUT
REORDER

OUTPUT
REORDER

DCT4
NODE

DCT4
NODE

DCT4
NODE

DCT4
NODE

DCT4
NODE

DCT4
NODE

PERFECT
SHUFFLE

PERFECT
SHUFFLE

OUT0[15:0]-
OUT7[15:0]

IN0[7:0]-
IN7[7:0]

20�16-BIT COEFFICIENT
REGISTER FILE

OUT0[15:0]-
OUT7[15:0]

INPUT
REORDER

IN0[7:0]-
IN7[7:0]

12�16-BIT COEFFICIENT
REGISTER FILE

HYPERBLOX FP
FPGA CONTROL

DCT4 NODE

DCT4 NODE

PROGRAMMABLE
REORDERING

(SHUFFLE)

=FPGA =ASIC

4

4

Combining six Butterfly nodes creates the complete
structure (courtesy Leopard Logic).

Further expanding the ASIC-and-FPGA partitioned
design boosts its performance (courtesy Leopard

Logic).

F igure  C

F igure  D




